Deep learning-based schemes for singularly perturbed convection-diffusion problems

نویسندگان

چکیده

Deep learning-based numerical schemes such as Physically Informed Neural Networks (PINNs) have recently emerged an alternative to classical for solving Partial Differential Equations (PDEs). They are very appealing at first sight because implementing vanilla versions of PINNs based on strong residual forms is easy, and neural networks offer high approximation capabilities. However, when the PDE solutions low regular, expert insight required build deep learning formulations that do not incur in variational crimes. Optimization solvers also significantly challenged, can potentially spoil final quality approximated solution due convergence bad local minima, generalization In this paper, we present exhaustive study merits limitations these exhibit low-regularity, compare performance with respect more benign cases smooth. As a support our study, consider singularly perturbed convection-diffusion problems where regularity typically degrades certain multiscale parameters go zero.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Convection in One Dimensional Singularly Perturbed Convection-Diffusion Problems

Linear singularly perturbed ordinary differential equations of convection diffusion type are considered. The convective coefficient varies in scale across the domain which results in interior layers appearing in areas where the convective coefficient decreases from a scale of order one to the scale of the diffusion coefficient. Appropriate parameter-uniform numerical methods are constructed. Nu...

متن کامل

Nitsche-mortaring for singularly perturbed convection-diffusion problems

A finite element method for a singularly perturbed convection-diffusion problem with exponential boundary layers is analysed. Using a mortaring technique we combine an anisotropic triangulation of the layer region (into rectangles) with a shape regular one of the remainder of the domain. This results in a possibly non-matching (and hybrid), but layer adapted mesh of Shishkin type. We study the ...

متن کامل

Schwartz Methods for Singularly Perturbed Convection-Diffusion Problems

In this paper we consider singularly perturbed ordinary differential equations with convection terms. An ε-uniformly convergent finite difference scheme is constructed for such boundary value problems by using an upwind finite difference operator and a piecewise uniform mesh. Our primary interest is the design of a numerical method, for which a parallel technique will later be applicable. In th...

متن کامل

High-order Time-accurate Schemes for Singularly Perturbed Parabolic Convection-diffusion Problems with Robin Boundary Conditions

The boundary-value problem for a singularly perturbed parabolic PDE with convection is considered on an interval in the case of the singularly perturbed Robin boundary condition; the highest space derivatives in the equation and in the boundary condition are multiplied by the perturbation parameter ε. In contrast to the Dirichlet boundary-value problem, for the problem under consideration the e...

متن کامل

Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems

In this paper, parameter-uniform numerical methods for a class of singularly perturbed parabolic partial differential equations with two small parameters on a rectangular domain are studied. Parameter-explicit theoretical bounds on the derivatives of the solutions are derived. The solution is decomposed into a sum of regular and singular components. A numerical algorithm based on an upwind fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM

سال: 2023

ISSN: ['1270-900X']

DOI: https://doi.org/10.1051/proc/202373048